知網 門戶 科學 查看內容

基因

来源:wikitw.club  2016-2-1 19:50

   

基因[1](遺傳因子)是遺傳的物質基礎,最少構成生命需要382[2]個基因,是DNARNA分子上具有遺傳信息的特定核苷酸序列。基因通過複製把遺傳信息傳遞給下一代,使後代出現與親代相似的性狀。也通過突變改變這自身的締合特性,儲存著生命孕育、生長、凋亡過程的全部信息,通過複製、表達、修復,突變,完成生命繁衍、細胞分裂和蛋白質合成等重要生理過程。生物的生、長、病、老、死等一切生命現象都與基因有關。它也是決定生命健康的內在因素。

[活動]「你好,地球」百科大神之巔峰對決!

目 錄1—基本內容

2基因

3英文簡述

4基因結構

4.1 結構基因

4.2 非結構基因

5基因特點

6認識的發展

7重疊基因的發現

8類別

9相互作用

10非等位基因的相互作用

10.1 互補基因

10.2 異位顯性基因

10.3 累加基因

10.4 修飾基因

10.5 抑制基因

10.6 調節基因

10.7 微效多基因

10.8 背景基因型

11等位基因的相互作用

11.1 基本類型

11.2 無效基因

11.3 亞效基因

11.4 超效基因

11.5 新效基因

11.6 反效基因

11.7 鑲嵌顯性

12基因與環境的相互作用

12.1 概述

12.2 性別

12.3 年齡

12.4 背景基因型

13基因變異

14基因破譯

15基因診斷

16基因重組

17基因療法

18基因突變

19基因調控

20基因環保

21基因武器

22基因計算

23基因識別和親子鑒定

24基因檢測

25基因對大腦的影響

26基因工程的應用

26.1 生產領域

26.2 軍事領域

26.3 環境保護

26.4 醫療方面

26.5 基因工程藥物

26.6 加快農作物的培育

26.7 分子進化工程的研究

27我國基因研究的成果

28基因工程的意義

29物理學科

30基因與環境

1—基本內容人體基因組圖譜好比是一張能說明構成每個人體細胞脫氧核糖核酸(DNA)的30億個鹼基對精確排列 DNA

的「地圖」。科學家們認為,通過對每一個基因的測定,人們將能夠找到新的方法來治療和預防許多疾病,如癌症和心臟病等。該圖非常形象地把基因家族的基因片段描繪出來。 基因

2基因 dna

有遺傳效應的DNA片段,是控制生物性狀的基本遺傳單位。

人們對基因的認識是不斷發展的,19世紀60年代,遺傳學家孟德爾就提出了生物的性狀是由遺傳因子控制的觀點,但這僅僅是一種邏輯推理的產物。20世紀初期,遺傳學家摩爾根通過果蠅的遺傳實驗,認識到基因存在於染色體上,並且在染色體上是呈線性排列,從而得出了染色體是基因載體的結論。

20世紀50年代以後,隨著分子遺傳學的發展,尤其是沃森和克里克提出雙螺旋結構以後,人們才真正認識了基因的本質,即基因是具有遺傳效應的DNA片斷。研究結果還表明,每條染色體只含有1~2個DNA分子,每個DNA分子上有多個基因,每個基因含有成百上千個脫氧核苷酸。由於不同基因的脫氧核苷酸的排列順序(鹼基序列)不同。因此,不同的基因就含有不同的遺傳信息。1994年中科院曾邦哲提出系統遺傳學概念與原理,探討貓之為貓、虎之為虎的基因邏輯與語言,提出基因之間相互關係與基因組邏輯結構及其程序化表達的發生研究。

3英文簡述A gene is a set of segments of nucleic acid that contains the information necessary to produce a functional RNA product in a controlled manner. They contain regulatory regions dictating under what conditions this product is made, transcribed regions dictating the sequence of the RNA product, and/or other functional sequence regions. The physical development and phenotype of organisms can be thought of as a product of genes interacting with each other and with the environment,and genes can be considered as units of inheritance.

4基因結構結構基因基因中編碼RNA或蛋白質的DNA序列。

(1)原核生物結構基因:連續的,RNA合成不需要剪接加工;

(2)真核生物結構基因:由外顯子(編碼序列)和內含子(非編碼序列)兩部分組成。

非結構基因結構基因兩側的一段不編碼的DNA片段(即側翼序列),參與基因表達調控。

(1)順式作用元件:能影響基因表達,但不編碼RNA和蛋白質的DNA序列;

其中包括:

啟動子:RNA聚合酶特異性識別結合和啟動轉錄的DNA序列。有方向性,位於轉錄起始位點上游。

上游啟動子元件:TATA盒上游的一些特定DNA序列,反式作用因子可與這些元件結合,調控基因的轉錄效率。

反應元件:與被激活的信息分子受體結合,並能調控基因表達的特異DNA序列。

增強子:與反式作用因子結合,增強轉錄活性,在基因任意位置都有效,無方向性。

沉默子:基因表達負調控元件,與反式作用因子結合,抑制轉錄活性。

Poly(A)加尾信號:結構基因末端保守的AATAAA順序及下游GT或T富含區,被多聚腺苷酸化特異因子識別,在mRNA 3′端加約200個A。

(2)反式作用因子:能識別和結合特定的順式作用元件,並影響基因轉錄的一類蛋白質或RNA。[3]

5基因特點 基因的複製與表達

基因有兩個特點,一是能忠實地複製自己,以保持生物的基本特徵;二是基因能夠「突變」,突變絕大多數會導致疾病,另外的一小部分是非致病突變。非致病突變給自然選擇帶來了原始材料,使生物可以在自然選擇中被選擇出最適合自然的個體。

含特定遺傳信息的核苷酸序列,是遺傳物質的最小功能單位。除某些病毒的基因由核糖核酸(RNA)構成以外,多數生物的基因由脫氧核糖核酸(DNA)構成,並在染色體上作線狀排列。基因一詞通常指染色體基因。在真核生物中,由於染色體都在細胞核內,所以又稱為核基因。位於線粒體葉綠體等細胞器中的基因則稱為染色體外基因、核外基因或細胞質基因,也可以分別稱為線粒體基因、質粒和葉綠體基因。

在通常的二倍體的細胞或個體中,能維持配子或配子體正常功能的最低數目的一套染色體稱為染色體組或基因組,一個基因組中包含一整套基因。相應的全部細胞質基因構成一個細胞質基因組,其中包括線粒體基因組和葉綠體基因組等。原核生物的基因組是一個單純的DNA或RNA分子,因此又稱為基因帶,通常也稱為它的染色體。

基因在染色體上的位置稱為座位,每個基因都有自己特定的座位。在同源染色體上佔據相同座位的不同形態的基因都稱為等位基因。在自然群體中往往有一種佔多數的(因此常被視為正常的)等位基因,稱為野生型基因;同一座位上的其他等位基因一般都直接或間接地由野生型基因通過突變產生,相對於野生型基因,稱它們為突變型基因。在二倍體的細胞或個體內有兩個同源染色體,所以每一個座位上有兩個等位基因。如果這兩個等位基因是相同的,那麼就這個基因座位來講,這種細胞或個體稱為純合體;如果這兩個等位基因是不同的,就稱為雜合體。在雜合體中,兩個不同的等位基因往往只表現一個基因的性狀,這個基因稱為顯性基因,另一個基因則稱為隱性基因。在二倍體的生物群體中等位基因往往不止兩個,兩個以上的等位基因稱為復等位基因。不過有一部分早期認為是屬於復等位基因的基因,實際上並不是真正的等位,而是在功能上密切相關、在位置上又鄰接的幾個基因,所以把它們另稱為擬等位基因。某些表型效應差異極少的復等位基因的存在很容易被忽視,通過特殊的遺傳學分析可以分辨出存在於野生群體中的幾個等位基因。這種從性狀上難以區分的復等位基因稱為同等位基因。許多編碼同工酶的基因也是同等位基因。

屬於同一染色體的基因構成一個連鎖群(見連鎖和交換)。基因在染色體上的位置一般並不反映它們在生理功能上的性質和關係,但它們的位置和排列也不完全是隨機的。在細菌中編碼同一生物合成途徑中有關酶的一系列基因常排列在一起,構成一個操縱子(見基因調控);在人、果蠅和小鼠等不同的生物中,也常發現在作用上有關的幾個基因排列在一起,構成一個基因複合體或基因簇或者稱為一個擬等位基因系列或複合基因。

6認識的發展從孟德爾定律的發現,一百多年來人們對基因的認識在不斷地深化。

基因的分離定律

1866年,奧地利學者G.J.孟德爾在他的豌豆雜交實驗論文中,用大寫字母A、B等代表顯性性狀如圓粒、子葉黃色等,用小寫字母a、b等代表隱性性狀如皺粒、子葉綠色等。他並沒有嚴格地區分所觀察到的性狀和控制這些性狀的遺傳因子。但是從他用這些符號所表示的雜交結果來看,這些符號正是在形式上代表著基因,而且至今在遺傳學的分析中為了方便起見仍沿用它們來代表基因。

20世紀初孟德爾的工作被重新發現以後,他的定律又在許多動植物中得到驗證。1909年丹麥學者W.L.約翰森提出了基因這一名詞,用它來指任何一種生物中控制任何性狀而其遺傳規律又符合於孟德爾定律的遺傳因子,並且提出基因型和表現型這樣兩個術語,前者是一個生物的基因成分,後者是這些基因所表現的性狀。

1910年美國遺傳學家兼胚胎學家T.H.摩爾根在果蠅中發現白色複眼 (white eye,W)突變型,首先說明基因可以發生突變,而且由此可以知道野生型基因W+具有使果蠅的複眼發育成為紅色這一生理功能。1911年摩爾根又在果蠅的 X連鎖基因白眼和短翅兩品系的雜交子二代中,發現了白眼、短翅果蠅和正常的紅眼長翅果蠅,首先指出位於同一染色體上的兩個基因可以通過染色體交換而分處在兩個同源染色體上。交換是一個普遍存在的遺傳現象,不過直到40年代中期為止,還從來沒有發現過交換髮生在一個基因內部的現象。因此當時認為一個基因是一個功能單位,也是一個突變單位和一個交換單位。

40年代以前,對於基因的化學本質並不了解。直到1944年 O.T.埃弗里等證實肺炎雙球菌的轉化因子是DNA,才首次用實驗證明了基因是由DNA構成。

1955年S.本澤用大腸桿菌T4噬菌體作材料,研究快速溶菌突變型rⅡ的基因精細結構,發現在一個基因內部的許多位點上可以發生突變,並且可以在這些位點之間發生交換,從而說明一個基因是一個功能單位,但並不是一個突變單位和交換單位,因為一個基因可以包括許多突變單位(突變子)和許多重組單位(重組子)(見互補作用)。

1969年J.夏皮羅等從大腸桿菌中分離到乳糖操縱子,並且使它在離體條件下進行轉錄,證實了一個基因可以離開染色體而獨立地發揮作用,於是顆粒性的遺傳概念更加確立。隨著重組DNA技術和核酸的順序分析技術的發展,對基因的認識又有了新的發展,主要是發現了重疊的基因、斷裂的基因和可以移動位置的基因。

7重疊基因的發現 重疊基因示意圖

重疊基因是在1977年發現的。早在1913年A.H.斯特蒂文特已在果蠅中證明了基因在染色體上作線狀排列,50年代對基因精細結構和順反位置效應等研究的結果也說明基因在染色體上是一個接著一個排列而並不重疊。但是1977年F.桑格在測定噬菌體ΦX174的DNA的全部核苷酸序列時,卻意外地發現基因D中包含著基因E。基因E的第一個密碼子(見遺傳密碼)從基因D的中央的一個密碼子TAT的中間開始,因此兩個部分重疊的基因所編碼的兩個蛋白質非但大小不等,而且氨基酸也不相同。在某些真核生物病毒中也發現有重疊基因。

斷裂的基因也是在1977年發現的,它是內部包含一段或幾段最後不出現在成熟的mRNA中的片段的基因。這些不出現在成熟的mRNA中的片段稱為內含子,出現在成熟的mRNA中的片段則稱為外顯子。例如下面這一基因,有三個外顯子和兩個內含子。在幾種哺乳動物的核基因、酵母菌的線粒體基因以及某些感染真核生物的病毒中都發現了斷裂的基因。內含子的功用以及轉錄后的加工機制是真核生物分子遺傳學的一個吸引人的課題。

功能、類別和數目到目前為止在果蠅中已經發現的基因不下於1000個,在大腸桿菌中已經定位的基因大約也有1000個,由基因決定的性狀雖然千差萬別,但是許多基因的原初功能卻基本相同。

1945年G.W.比德爾通過對脈孢菌的研究,提出了一個基因一種酶假設,認為基因的原初功能都是決定蛋白質的一級結構(即編碼組成肽鏈的氨基酸序列)。這一假設在50年代得到充分的驗證。

8類別 染色體

60年代初F.雅各布和J.莫諾發現了調節基因。把基因區分為結構基因和調節基因是著眼于這些基因所編碼的蛋白質的作用:凡是編碼酶蛋白血紅蛋白膠原蛋白或晶體蛋白等蛋白質的基因都稱為結構基因;凡是編碼阻遏或激活結構基因轉錄的蛋白質的基因都稱為調節基因。但是從基因的原初功能這一角度來看,它們都是編碼蛋白質。根據原初功能(即基因的產物)基因可分為:

①編碼蛋白質的基因。

②沒有翻譯產物的基因。

③不轉錄的DNA區段。

一個生物體內的各個基因的作用時間常不相同,有一部分基因在複製前轉錄,稱為早期基因;有一部分基因在複製後轉錄,稱為晚期基因。一個基因發生突變而使幾種看來沒有關係的性狀同時改變,這個基因就稱為多效基因。

數目不同生物的基因數目有很大差異,已經確知RNA噬菌體MS2只有3個基因,而哺乳動物的每一細胞中至少有100萬個基因。但其中極大部分為重複序列,而非重複的序列中,編碼肽鏈的基因估計不超過10萬個。除了單純的重複基因外,還有一些結構和功能都相似的為數眾多的基因,它們往往緊密連鎖,構成所謂基因複合體或叫做基因家族。

等位基因:位於一對同源染色體的相同位置上控制某一性狀的不同形態的基因。不同的等位基因產生例如發色或血型等遺傳特徵的變化。等位基因控制相對性狀的顯隱性關係及遺傳效應,可將等位基因區分為不同的類別。在個體中,等位基因的某個形式(顯性的)可以比其他形式(隱性的)表達得多。等位基因(gene)是同一基因的另外「版本」。例如,控制捲舌運動的基因不止一個「版本」,這就解釋了為什麼一些人能夠捲舌,而一些人卻不能。有缺陷的基因版本與某些疾病有關,如囊性纖維化。值得注意的是,每個染色體(chromosome)都有一對「複製本」,一個來自父親,一個來自母親。這樣,我們的大約3萬個基因中的每一個都有兩個「複製本」。這兩個複製本可能相同(相同等位基因allele),也可能不同。下圖顯示的是一對染色體,上面的基因用不同顏色表示。在細胞分裂過程中,染色體的外觀就是如此。如果比較兩個染色體(男性與女性)上的相同部位的基因帶,你會看到一些基因帶是相同的,說明這兩個等位基因是相同的;但有些基因帶卻不同,說明這兩個「版本」(即等位基因)不同。

擬等位基因(pseudoalleles):表型效應相似,功能密切相關,在染色體上的位置又緊密連鎖的基因。它們象是等位基因,而實際不是等位基因。

傳統的基因概念由於擬等位基因現象的發現而更趨複雜。摩根學派在其早期的發現中特別使他們感到奇怪的是相鄰的基因一般似乎在功能上彼此無關,各行其是。影響眼睛顏色、翅脈形成、剛毛形成、體免等等的基因都可能彼此相鄰而處。具有非常相似效應的「基因」一般都僅僅不過是單個基因的等位基因。如果基因是交換單位,那就絕不會發生等位基因之間的重組現象。事實上摩根的學生在早期(1913;1916)試圖在白眼基因座位發現等位基因的交換之所以都告失敗,後來才知道主要是由於試驗樣品少。然而自從斯特體範特(1925)提出棒眼基因重複的不均等交換學說以及布里奇斯(1936)根據唾液腺染色體所提供的證據支持這學說之尼,試圖再一次在仿佛是等位基因之間進行重組的時機已經成熟。Oliver(1940)首先取得成功,在普通果蠅的菱形基因座位上發現了等位基因不均等交換的證據。兩個不同等位基因(Izg/Izp)被標誌基因拚合在一起的雜合子以0.2%左右的頻率回復到野生型。標誌基因的重組證明發生了「等位基因」之間的交換。

非常靠近的基因之間的交換隻能在極其大量的試驗樣品中才能觀察到,由於它們的正常行為好像是等位基因,因此稱為擬等位基因(Lewis,967)。它們不僅在功能上和真正的等位基因很相似,而且在轉位(transpo-sition)后能產生突變體表現型。它們不僅存在於果蠅中,而且在玉米中也已發現,特別在某些微生物中發現的頻率相當高。分子遺傳學對這個問題曾有很多解釋,然而由於對真核生物的基因調節還知之不多,所以還無法充分了解。

位置效應的發現產生了深刻影響。杜布贊斯基在一篇評論性文章中曾對此作出下面的結論;「一個染色體不單是基因的機械性聚合體,而且是更高結構層次的單位……染色體的性質由作為其結構單位的基因的性質來決定;然而染色體是一個合諧的系統,它不僅反映了生物的歷史,它本身也是這歷史的一個決定因素」(Dobzhaansky,1936:382)。

有些人並不滿足於這種對基因的「串珠概念」的溫和修正。自從孟德爾主義興起之初就有一些生物學家(例如Riddle和Chiid)援引了看來是足夠份量的證據反對基因的顆粒學說。位置效應正好對他們有利。Goldschmidt(1938;1955)這時變成了他們的最雄辯的代言人。他提出一個「現代的基因學說」(1955:186)來代替(基因的)顆粒學說。按照他的這一新學說並沒有定位的基因而只有「在染色體的一定片段上的一定分子模式,這模式的任何變化(最廣義的位置效應)就改變了染色體組成部分的作用從而表現為突變體。」染色體作為一個整體是一個分子「場」,習慣上所謂的基因是這個場的分立的或甚至是重疊的區域;突變是染色體場的重新組合。這種場論和遺傳學的大量事實相矛盾因而未被承認,但是像Goldschmidt這樣一位經驗豐富的知名遺傳學家竟然如此嚴肅地提出這個理論這件事實就表明基因學說還是多麼不鞏固。從1930年代到1950年代所發表的許多理論性文章也反映了這一點(Demerec,1938,1955;Muller,1945;Stadler,1954)。

復等位基因:基因如果存在多種等位基因的形式,這種現象就稱為復等位基因(multiple allelism)。任何一個二倍體個體只存在復等位基中的二個不同的等位基因。

在完全顯性中,顯性基因中純合子和雜合子的表型相同。在不完顯性中雜合子的表型是顯性和隱性兩種純合子的中間狀態。這是由於雜合子中的一個基因無功能,而另一個基因存在劑量效應所致。完全顯性中雜合體的表型是兼有顯隱兩種純合子的表型。此是由於雜合子中一對等位基因都得到表達所致。

比如決定人類ABO血型系統四種血型的基因IA、IB、i,每個人只能有這三個等位基因中的任意兩個。

9相互作用生物的一切表型都是蛋白質活性的表現。換句話說,生物的各種性狀幾乎都是基因相互作用的結果。所謂相互作用,一般都是代謝產物的相互作用,只有少數情況涉及基因直接產物,即蛋白質之間的相互作用。

10非等位基因的相互作用 非等位基因自由組合

依據非等位基因相互作用的性質可以將它們歸納為:

互補基因若干非等位基因只有同時存在時才出現某一性狀,其中任何一個發生突變時都會導致同一突變型性狀,這些基因稱為互補基因。

異位顯性基因影響同一性狀的兩個非等位基因在一起時,得以表現性狀的基因稱為異位顯性基因或稱上位基因

累加基因對於同一性狀的表型來講,幾個非等位基因中的每一個都只有部分的影響,這樣的幾個基因稱為累加基因或多基因。在累加基因中每一個基因只有較小的一部分表型效應,所以又稱為微效基因。相對於微效基因來講,由單個基因決定某一性狀的基因稱為主效基因。

修飾基因本身具有或者沒有任何表型效應,可是和另一突變基因同時存在便會影響另一基因的表現程度的基因。如果本身具有同一表型效應則和累加基因沒有區別。

抑制基因一個基因發生突變后使另一突變基因的表型效應消失而恢復野生型表型,稱前一基因為后一基因的抑制基因。如果前一基因本身具有表型效應則抑制基因和異位顯性基因沒有區別。

調節基因一個基因如果對另一個或幾個基因具有阻遏作用或激活作用則稱該基因為調節基因。調節基因通過對被調節的結構基因轉錄的控制而發揮作用。具有阻遏作用的調節基因不同於抑制基因,因為抑制基因作用於突變基因而且本身就是突變基因,調節基因則作用於野生型基因而且本身也是野生型基因。

微效多基因影響同一性狀的基因為數較多,以致無法在雜交子代中明顯地區分它們的類型,這些基因統稱為微效多基因或稱多基因。

背景基因型從理論上看,任何一個基因的作用都要受到同一細胞中其他基因的影響。除了人們正在研究的少數基因以外,其餘的全部基因構成所謂的背景基因型或稱殘餘基因型。

11等位基因的相互作用基本類型1932年H.J.馬勒依據突變型基因與野生型等位基因的關係歸納為無效基因、亞效基因、超效基因、新效基因和反效基因。

無效基因不能產生野生型表型的、完全失去活性的突變型基因。一般的無效基因卻能通過回復突變而成為野生型基因。

亞效基因表型效應在性質上相同於野生型,可是在程度上次於野生型的突變型基因。

超效基因表型效應超過野生型等位基因的突變型基因。

新效基因產生野生型等位基因所沒有的新性狀的突變型基因。

反效基因作用和野生型等位基因相對抗的突變型基因。

鑲嵌顯性對於某一性狀來講,一個等位基因影響身體的一個部分,另一等位基因則影響身體的另一部分,而在雜合體中兩個部分都受到影響的現象稱為鑲嵌顯性。

12基因與環境的相互作用概述基因作用的表現離不開內在

推薦閱讀